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Introduction 

Described herein are the key findings and results associated with the project entitled 
"Investigation of ELF Signals Associated with Mine Warfare, A University of Idaho 
and Acoustic Research Detachment Collaboration, Phase One." Extremely low 
frequency (ELF) electromagnetic signals are used by enemy combatants to detect and, 
subsequently, to incapacitate, by means of surface and subsurface mines, naval vessels. 
This program is of high importance to the Navy - particularly since ELF signals are 
one of the primary signature emissions of the Navy's proposed electric ship fleet. 

In principle, the questions that are being asked in this investigation are: 1) once an 
ELF signal is generated, how far does it propagate and still be detectable and 2) how 
can such signals be modeled, excited and measured? To this end, the scenario 
considered is one in which an ELF source of the electric or magnetic kind is located in 
or above water, such as a lake or ocean. This source stimulates an ELF signal that is 
free to propagate in the water and air, and is reflected by various material interfaces, 
say between the water and air, or between the water and the floor. For purposes of 
experimental demonstration, the investigation focuses on the scenario of ELF sources 
and signals in the context of Lake Pend Oreille, where the Acoustic Research 
Detachment (ARD, Bayview, Idaho) is located and entrusted with the necessary assets 
to perform validation measurements. 

The research program was designed with two major thrusts: Modeling and 
experimentation. The modeling thrust was coordinated and executed by the University 
of Idaho (UI), Moscow, Idaho; the experimentation thrust was coordinated and 
executed by ARD. This report focuses primarily on the modeling thrust. A separate 
report from ARD will be issued that addresses the experimentation thrust. 

ELF Modeling 

Modeling of ELF electromagnetic signals in water environments can be accomplished 
either by means of direct, analytical solution of Maxwell's equations or by numerical 
solutions of the same. The former is attractive for purposes of gaining insights into the 
physical mechanisms that hinder or aid the propagation of ELF signals. The 
disadvantage is found in the number of simplifying assumptions that are made to 
bring about a closed-form solution. A numerical solution has no such simplifying 
assumptions, but does suffer from discretization errors. In principle, it can model all 
of the physical and geometrical features of the domain of consideration. The price 
paid for doing so, however, is the required time and the CPU/memory resources 
needed to accomplish the task. Data visualization and management are other issues 
that need to be addressed when working with large data sets produced by numerical 
solvers. The positive and negative tradeoffs between these two approaches (i.e. 
analytical vs. numerical) suggest that no one method is superior. For that reason the 



UI team adopted a diverse strategy that encompasses many different approaches in 
order to assure a positive outcome and to provide deliverable modeling 
methodologies. 

The four principle techniques that were considered during the Phase One effort were 
the a) Sommerfeld Half-Space (SHS) method, b) Finite-difference, time-domain 
method (FDTD), c) High Frequency Structural Simulator (HFSS), finite-element 
method, and d) the quasi-static method (QS). A summary of these methods is provided 
next. Detailed information on each of them is provided in the attached appendices. 

The SHS method is an analytical approach that assumes that all interfaces (say 
between water and air, or between water and floor) are planar and infinitely extended. 
This is assumption is reasonably valid for the water-air interface, particularly in open 
water regions where the source is located near the surface. For the littoral zones, the 
method may fail, particularly when electric sources are used to excite the ELF signals. 
By assuming that the interfaces are fiat, a closed-form solution can be devised that is 
cast in terms of Fourier-Bessel integrals. These integrals can be evaluated numerically 
and rapidly in a matter of seconds on any desktop machine. Even with the potential 
deficiency of treating all interfaces as planar, the SHS method is attractive as a 
validation tool for the other numerical modeling approaches. For example, the team 
used the SHS method to validate the data produced by the FDTD or HFSS methods 
(described next) when these numerical methods consider the same layered media 
problem statement. Professor Robert Olsen of Washington State University (WSU) is 

the lead investigator of the SHS method. 

The FDTD method is a numerical approach that discretizes Maxwell's equations in 
their fundamental form using a staggered grid and leap-frog integrator. This method 
has been fully vetted in the open literature and has been established as a robust way of 
obtaining accurate simulation data. In principle, the FDTD method accounts for all 
material interfaces and material inhomogeneities by assigning permittivity, 
permeability and conductivity values along edges of the grid elements. Curvilinear 
boundaries are approximated by straight line, stair-stepped boundaries. For 
geometrical features that are significantly less than a wavelength, such stair-stepping 
causes no appreciable errors in the computed data. The domain of interest at Lake 
Pend Oreille is about 8 km on a side; the lake floor at its deepest point is about 335 
km. Assuming an operating frequency of 100 Hz and a water conductivity of 0.018 
S/m, the corresponding skin depth is 375 m and the wavelength is 2.356 km; for air, 
the wavelength is 3,000 km. Thus the domain spans a fraction of a wavelength in air 
but about 3.4 wavelengths (or 21.3 skin depths) in water. The significant disparity 
between these two relative sizes potentially introduces computational complexities. 
One area of concern that was addressed in this project was the proper design of an 
absorbing boundary condition (ABC) or perfectly matched layer (PML) that will 
allow an open physical domain to be truncated into a finite computational domain. 



Placement of this ABC/PML in terms of wavelengths is critical if non-spurious 
reflections are to be avoided. Typically, the farther an ABC is placed away from a 
scattering object, the better it performs. However, this increases the computational 
domain size and hence, increases the simulation time and CPU/memory requirements 
of the computer. PML's are more complex to implement, but can be placed closer to 
the scattering object while sustaining excellent absorption characteristics. Professor 
Dennis Sullivan of the University of Idaho is the lead engineer of the FDTD and PML 
effort. 

HFSS is a commercially available electromagnetic, finite-element, frequency-domain, 
numerical solver that has been designed by Ansoft/Ansys for antenna and microwave 
circuit applications. One question that was asked in this investigation was whether 
such a tool could be used to predict the electromagnetic propagation characteristics of 
an ELF signal in a highly conductive environment. We believe that the answer is a 
qualified yes. However, being that the solver is commercial and not custom, the user 
does not have direct control over some of the solver's functionality. This is readily 
apparent in the method by which the ELF sources are constructed in the solver's 
graphical user interface (GUI). Second, some of its interpolation functions cause some 
errors in the outputted data. Third, learning how to import the geometrical features of 
the Lake into the solver and optimizing the corresponding computational mesh is 
needed. Hence, the team spent considerable amount of time wrestling with these 
issues, but the results generated to date seem favorable. Professor Jeffrey Young of the 
University of Idaho is the lead engineer of the HFSS effort. 

The quasi-static method was also considered given the ELF nature of the 
electromagnetic signals. By definition, the quasi-static method does not consider any 
wavelike mechanisms in Maxwell's equations; it assumes that the field lines are the 
same as the static field, but oscillating. This is accomplished by neglecting a) electric 
displacement currents for magnetic sources and b) magnetic displacement currents for 
electric sources. By doing so, simple solutions can be constructed that correlate well 
with other more advanced solutions, like HFSS and FDTD. Professor Jeffrey Young 
of the University of Idaho is the lead engineer of the quasi-static modeling effort. 

Each of the aforementioned numerical methods requires a precise understanding of 
the electrical and geometrical features of the Lake. To this end, the team spent 
considerable amount of time digitizing graphical topological and bathymetry data 
over an 8 km by 8 km region of the Lake that is centered on the electromagnetic array 
(EMA), as shown in Figure 1. 



Figure 1: Electromagnetic domain of interest. 

Renditions of the cross-sectional portion of the Lake, as obtained from this 
discretization process and starting from the north end of the Lake, are shown in 
Figures 2 through 5. 

Figure 2: Cross-sectional rendering of the Lake; far-north end. 

Figure 3: Cross-sectional rendering of the Lake; middle-north end. 



Figure 4: Cross-sectional rendering of the Lake; middle-south end. 

Figure 5: Cross-sectional rendering of the Lake; far-south end. 

For these cross-sections, we see that the Lake spans about 6.5 km and has a depth of 
about 375 m; the highest land feature is about 425 m above the Lake. Once digitized 
and stored electronically, each of the previously discussed solvers could use that data 
in their computations. 

In addition to precise geometrical data, the various solvers also require precise 
knowledge of the conductivity of the Lake and the mud at the bottom of the Lake. The 
Ul team used a value of 0.018 S/m for the water and 0.012 S/m for the mud floor. The 
former number was previously measured by ARD; the latter number was measured 
during the course of Phase One by filling a PVC tube with the mud, placing electrodes 
on the ends of the tube as caps and measuring the total resistance between the 
electrodes. By knowing the geometrical dimensions of the tube, we were able to 
determine the conductivity from the resistance value. As for the value of the dielectric 
permittivity of the Lake, this was not deemed essential, since displacement currents in 
the Lake are virtually insignificant relative to the conduction currents. 

Although detailed information pertaining to the experimental portion of this project 
will be documented by ARD, a few words about it are needed to set the context of 
how the models are validated. Most of the validation data that has been used to date 
was gathered in December 2008 by ARD. In one set of experiments, an electric source 
was devised by mounting two metallic plates on the hull of a boat (see Figure 6); in 



another, one plate was attached to the boat, which also towed a skiff with the other 
metallic plate attached to it. The distance between the boat and the skiff was 40 
meters. 

Figure 6: Electrodes on the source boat. 

In both cases, the plates were connected to cables, which were also connected to a 
low-frequency, high-powered ELF signal source. For the case of the skiff, an ac 
electric current of 1.25 A passed through the plates allowing conduction currents to 
flow in the water. These currents stimulated both and magnetic fields within the Lake. 
As the boat motored across the Lake's surface, precise GPS data was logged to 
determine its position and heading. Over five days, about 225 runs were executed 
consisting of 85 noise/calibration runs and 140 experimental runs. The experimental 
runs for phase II are shown in Figure 7. Many of the boat runs were redundant. 

2000 3OO0 

Figure 7: Experimental boats runs conducted by ARD in December 2008. 
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The grid of Figure 7 was rotated to match the alignment of the electromagnetic array 
(EMA, i.e. field sensing unit) thus making the .x-axis shifted 10 degrees positive from 
that of easting. The alignment of the sensors can randomly shift up to 5 degrees 
during the measurement process, due to water motion. The range of the experiment 
was about 6.7 km in the x-direction and 5.6 km in the ^-direction, or 37.5 km2 with 
the EMA as the origin. Most of the experiment runs were perpendicular or transverse 
to an axis of the EMA and some were at arbitrary angles to it. 

Of these 140 runs, about 25 of them have been processed. The average boat speeds of 
these runs were computed from the GPS and time-stamping data; several boat speeds 
are shown in Figure 8. From this plot, we see that the speeds are typically between 
one to three meters per second. 
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Figure 8: Boat speeds for various runs. 

To detect the fields, a series of electric and magnetic sensors were connected to a truss 
unit called the electromagnetic array (EMA) (see Figures 9 and 10) that could be 
raised (or lowered) from the Lake floor to the surface by ARD's Target Modeling 
Hauler (TMH). The sensors were connected to a data acquisition system and field 
strength amplitudes were sampled 6,000 times per second, resulting in a Nyquist 
frequency of 3 kHz. 



Figure 9: Electric (left) and magnetic (right) sensors. 

Figure 10: Electromagnetic Array 

Once the raw experimental data was gathered and recorded, a post-processing 
methodology had to be devised that could extract the ELF spectral component 
associated with the ELF source. This processing step required the use of a rectangular 
window function and Fast Fourier Transform (FFT) techniques operating on a one 
second sample of time-domain data (i.e. 6,000 samples). The other part of the 
post-processing step required the manipulation of the GPS data to match the 
coordinate systems of the FDTD, HFSS and QS models with the experiment. This 
step is not necessarily a complicated one, but care does need to be exercised to insure 
that the various coordinate axes are parallel and share a common origin. Several 
MatLab scripts have been written to handle both the FFT and GPS processing steps. A 
typical FFT spectrum from the experimental data is shown in Figure 11. The 100 Hz 
signal frequency is clearly seen, but is surrounded by a 60 Hz spectra and its plethora 
of harmonics. The noise floor is seen to be roughly 10 nV/m. 
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Figure 11: Typical spectrum of the experimental data. 

It should be noted that the experiment was conducted by moving the source about the 
lake for a fixed observation point. The simulations were conducted under the 
assumption that the source is fixed and the observation points are free to move. Since 
the relative distance between the source and the observation points is the critical 
dimension and since the medium is reciprocal, reciprocity can be invoked to assure 
that both approaches generate identical data. 

Key Results 

In the attached appendices, several specific results are given for each method. 
However, many of these methods have been validated by each other and by 
experimental data. These key results are presented next. 

First consider Figure 12, which shows the six test validation scenarios and boat paths. 
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Scenario #5 

Scenario #3 

Scenario #4 Scenario #1 

Scenario #6 Scenario #2 
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Figure 12: Six validation scenarios and the corresponding boat paths. 

Data for these six scenarios are shown in Figures 13 through 19. A summary of this 
data is provided next. 

• Figure 13: This corresponds to runs 4932, 4931 and 4926 for a 40 m, 1.25 A, 
1,000 Hz electric source. Data from the quasi-static, Sommerfeld (i.e. WSU), 
FDTD and HFSS methods for the x-component of the electric field are plotted 
as a function of radial distance when the EMA is located at a depth of 8.23 m. 
All but the quasi-static method align very well with the experimental results. 
However, since this data corresponds to distances between 500 and 3,000 
meters, which span multiple wavelengths at 1,000 Hz (i.e. X,= 118 m), the 
quasi-static method is not appropriate for this test case. Even so, it still 
predicts the correct trend and is only off by a factor of two. 

• Figure 14: This corresponds to runs 3046, 3044 and 3042 for a 40 m, 1.2 A, 
100 Hz electric source. Data from the quasi-static, Sommerfeld (i.e. WSU), 
FDTD and HFSS methods for the x-component of the electric field are plotted 
as a function of radial distance when the EMA is located at a depth of 8.23 m. 
In this case, all methods fail to give the correct experimental value, but 
nevertheless come close to it. Since the WSU and FDTD methods predict the 
same data, we surmise that the error is associated with some imprecise 
parametric value in the experiment. Further investigation is needed for this 
case. 

•    Figure 15: This corresponds to runs 4917 and 4918 for a 40 m, 1.25 A, 1,000 
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Hz electric source. Data from the quasi-static, Sommerfeld (i.e. WSU), FDTD 
and HFSS methods for the ^-component of the electric field are plotted as a 
function of radial distance when the EMA is located at a depth of 8.23 m. The 
exact same observations that were made for Figure 13 apply to this case. 

Figure 16: This corresponds to run 1016 for a 190 A-m2, 10 Hz magnetic 
source. Data from the Sommerfeld (i.e. WSU), FDTD and HFSS methods for 
the ^-component of the electric field are plotted as a function of radial distance 
when the EMA is located at a depth of 8.23 m. In this case the FDTD and 
Sommerfeld methods predict correctly the experimental outcome. HFSS 
predicts the correct trend, but the data are corrupted by random spikes. The 
cause of these spikes is understood. Since a magnetic source will weakly 
excite an electric field, the ability to compute such weak fields is strongly 
dependent on the HFSS mesh. Further work on mesh generation issues is 
needed. 

Figure 17: This also corresponds to run 1016 for a 190 A-m2, 10 Hz magnetic 
source. Data from the Sommerfeld (i.e. WSU), FDTD and HFSS methods for 
the z-component of the magnetic field are plotted as a function of radial 
distance when the EMA is located at a depth of 8.23 m. In this case the FDTD 
and Sommerfeld methods predict the same outcome. HFSS also predicts the 
correct outcome, but there are some noticeable deviations from the 
experimental data. All three methods are in slight disagreement with the 
experimental data. 

Figure 18: This corresponds to run 1117 for a 0.5 A-m, 100 Hz electric source 
(i.e. both electrodes are on the same boat). Data from the quasi-static, 
Sommerfeld (i.e. WSU), FDTD and HFSS methods for the x- and 
z-components of the electric field are plotted as a function of radial distance 
when the EMA is located at a depth of 295 m. (Note: Two different FDTD 
codes were written for this scenario to gauge their relative robustness; the 
results are virtually the same.) Here we see that the data from all five methods 
generate virtually the same result. However, none of the methods correctly 
predict the dip in the experimental field data. The cause of this is due to 
positional ambiguity of the moving source. For close range observations (in 
this case 10 meters or so), the source could have moved several meters during 
the one second sampling interval, which suggests that its effective static 
position is unknown. Since several meters is a large fraction of 10 meters, this 
positional ambiguity is large. In earlier cases the observations were on the 
order of hundreds of meters and a positional ambiguity of a few meters is 
inconsequential. We also note the quasi-static method compares favorably to 
the experimental data, which is to be expected for such close range 
observations. 



• Figure 19: This corresponds to runs 5035 and 5038 for a 50 A-m, 10 Hz 
electric source (i.e. both electrodes are on the same boat). Data from the 
quasi-static, Sommerfeld (i.e. WSU), FDTD and HFSS methods for the x- and 
z-components of the electric field are plotted as a function of radial distance 
when the EMA is located at a depth of 295 m. Since the dip in the field data 
occurs around 200 meters, the positional ambiguity effect, as noted previously, 
is not present. Also, we see that the FDTD data and the experimental data 
agree the best, although the other methods give reasonable results. 

Recall that the experimental data is gathered in sets of one second sample bins. Each 
bin corresponds to an approximate location of the boat. The actual position of the boat 
is ambiguous due to a non-zero boat speed. Consider Figure 20, which shows the 
effect of using bin sample sizes in excess of one second. As the sampling interval 
increases, the expected outcome of smoother data is also seen. For long-range 
observations, the increase in sample bin sizes does not have an adverse effect on the 
data. This will not be case for close-range distances since a 10 second bin size will 
correspond to a 20 to 30 meter positional ambiguity of the source. 
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Scenario #1 - Skiff towed @ 40m -1000 Hz - 50 A*m 
Runs 4932,4931,4926 
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Scenario #3 - Skiff -1000 Hz - 50 A*m 
Runs 4918,4917 
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Scenario #6 - Skiff @ 40m -10 Hz - 50 A*m - EMA @ 295 m 
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Future Work 

Based on the previous discussions and the objectives of the project, the following 
future work is envisioned: 

• HFSS predicts the correct result once a frequency-dependent calibration factor 
is specified. We surmise that this factor is related to the wave-number, since 
the factor is proportional to f72. Work is needed to understand why this factor 
is needed and its precise relationship to frequency. 

• There are two ways to implement a source in HFSS; each way has its 
advantages. We need to investigate whether Hertzian or scattered field sources 
are best. 
HFSS requires us to import Lake topographical and bathymetry data. Since the 
Lake floor, in particular, is smooth in some places and spatially varying in 
other places, we need to optimize the HFSS grid to these places to assure fast 
simulations and accurate data. Mesh optimization will be done with a 
specialized mesh editor from Sandia laboratories. 

• HFSS introduces errors, particularly in the magnetic field calculation at ELF 
frequencies. This calculation can be improved by mesh refinement. More 
research is needed to figure out how the mesh should be refined. 
Boat motion errors associated with source position ambiguity are made 
manifest, particularly close to EMA. Further work is needed to account for this 
effect in the modeling software. 

• FDTD results tend to be slow on single processor or single core machines. 
Multi-core FDTD optimization and parallelization of the FDTD codes will be 
implemented. 
Mesh truncation schemes for FDTD have been explored in Phase I. Further 
work in the area of perfectly matched layers is still needed. 
Ansys/Ansoft has a product called "Maxwell," which is a static field solver. 
Research is needed to see if this code can predict the quasi-static results. 
The Sommerfeld methodology has been shown to predict accurate results. One 
advantage of a closed-form solution is the ability to predict the up-over-down 
effect. This effect suggests that the up-over-down wave is less attenuated (with 
respect to the direct wave) once the wave escapes into the air medium. This 
analysis will be accomplished in Phase Two. 
An experiment in the Fall of 2009 and the Spring of 2010 is scheduled to 
produce more validation data. 
During Phase Three user manuals and documentation will be written for each 
of the delivered models and codes. 
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Appendix A: Sommerfeld Half Space Method 

Robert G Olsen, Zhi Li 

School of Electrical Engineering & Computer Science, Washington State University 

Formulation 

The purpose of this project is to find analytical solutions for the electric and magnetic 
fields in any layer of a 3-layer non-magnetic media model when a vertical or 
horizontal magnetic dipole (VMD or HMD) is radiating in the middle layer. The three 
layers, from top to bottom, are assumed to be air, lake water and lake bottom. And 
they are denoted as layer #0, #1 and #2, respectively. The illustrations of the model 
are shown in Fig. 1. 

Air 
, z 

z = 0 

Water 
VMD -fr z = -h 

///////// 
Bottom 

*o> Ob. Vo 

observation 
point 

zV.dV////////// 
h> °2. />0 

Air 
z 

c0. o0, M) 
z = o y 

Water 
HMD =• Z = -h 

///////// 
Bottom 

observation 
point 

'^y/////////// 
e* o2, M> 

Vertical magnetic dipole Horizontal magnetic dipole 

Fig. 1    Model illustrations 

As marked in the figure, e, (i = 0, 1 and 2) is the permittivity, //, is the permeability 

and Oj is the conductivity of the t layer. et - sne0, where en is the relative 

permittivity and So is the permittivity of free space. For non-magnetic media, fii~ fi2~ 

An integral form of the electric vector potential is used to derive the solutions to the 
fields. For VMD and HMD cases the vector potentials can be respectively written as 
(assuming the time variation is e1"") 

21 



VMD 

F? = *, [f,(X)-e-"":XJ0(Xp)dX        (z > 0) 

F! =k^ + k][[f2(X)-e^: +MX)-e"':]-XJ0(Xp)dX        (-d<z<0) 

F* = fc, [" /4 (A) • e">:XJ0 (Xp)dX        (z<-d) 

HMD 
K=*, £ f^y^u^xpyix    (z > o) 

F' =ki^T+k] [\.fliA)e""z + fMV,:]MMp)<M     (-d<z< o) 

HMD 
(contd.) 

Fy = *• f /4(A)e";;AJ0(Ap>/A        (z < -d) 

F? = ktlT [g^)e~"":MMp)di      (z > 0) 
oy * 

oy * 

(-d<z< 0) 

In these expressions of the vector potentials, the constants ki and y, and the variable u, 
are defined as (;' = 0, 1 and 2): 

jcops'JdA 
*•=• 4;r 

X,2 = "V/**,' 

«,=V(^2+r,2) 
O-. W; where   £' = £,-]—'-   is the complex permittivity of the /    layer,   Re(j,)<0   and 

Re(w,)>0. The term   £,    in   Fz   for VMD and F'v   for HMD represents the 
R 

radiation field by the dipole in an infinite homogeneous medium (infinite lake water 
for this case). It can be written in integral form as 

er,R     [it, ^u^e-"i(z+h)XJ0(Xp)dX      (z + h) > 0 

R      U £ u;[e"< (:+h)XJ0 {Xp)dX       (z + h) < 0 

where  R = {xl +/)    • 

The coefficient functions// through/ and gt through g4 can be determined from the 
tangential components of the electric and magnetic fields E and H, respectively, at the 
interfaces (z = 0 and z = -d planes), They are 
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VMD 

f _i \ 

v£i y L 

(»,+M2)e""lt"",)+(t/,-t/2)e »[(^-tV) 

//,./ 

fM) = 

/4W = 2 

- »: 

V " 

", 
\ 

V " 

f „' \ 

V^i J 

(u0 - M, )(w2 - w, )e~"'J - («0 + w, )(M2 + w, )e 

e-'i«[(u0-u])e-«h-(u0+u]y'h] 

(u0 - «, )(«2 - w, )e""'d - (w0 + M, )(w2 + u, )e",d 

/ \   u.(h-J)   ,  /        ,        \   -u,(h-J) (u,-u2)e
]       + {u,+u2)e  ' 

(UQ - H,)(«, - W, )e"",l/ - (W0 + W, )(w, + W, )e"''' 

g- [(n0-M,)e  ' -(t/0+M,)e' j 

(w0 - w, )(»2 - «, )e""''/ - (w0 + w, )(w2 + w, )e",J 

HMD 

2e' * =T^[(£^-£^y,0'~'')-(£^+«ft)^(W)] ; DEN 

/,= 
1 (g,'w0 -ggU,)^!*, -slu2)e "'U'+'J) +[e[u0 +£'0ui)(elu2 -£2u,)e"'ih' 

DEN 

A 
1   (g„M, -f|'M0)(f1'M2-£2M|)e"'(/'"l/)+(£'|'M0-^oMl)(£lM2+£2Ml)e '      \ ^~"i (*-<') 

£>£/V 

' ~w3d 

/4 = L(g|»o-g0"i)g       -W+*i"o)e    _ D£JV 

where   D.E'A'' = (e„w, -fl'«0)(£:2?Yl -e[u2)e "'' -(^oMi +£
I'
M

O)(
£

I'
M

2 + £2
Mi)e"' 

ft 
_ g2(g[ -<)[(K2 -ux)e-"d -{u,+u2)e"'d] f, + 2g>,(g,' -g2)g-"74 

g,'g; • Z)£A^, 

_ g2(g;-g;)(«2 -n,)e",",y;+g;(g;-gQK+«,)e""v4 
2 g;g: • DEN '0°2    ^^"| 

ft, 

ft. 

g;(g; -g,')(», +»2K"//i +<(g2 -e[)(u0-ul)e-^f4 

£'0s'2 • DEN, 

_ 2£'2u](£'0-£[)e"^f[+£'0(s't-£'2)[(u0 + uy"d-(u0 -»,)g-""/]/4 

g;g; • DEN, 

where  DEN, =(u0-u,)(u2-u,)e U'J -(u0+u,)(u,+u2)e
u 

With these coefficient functions being determined, the analytical solutions to the E 
and H fields can be derived from Maxwell's equations. The complete expressions for 
E and H fields in the water layer are listed below. 
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VMD: E and H fields in water (Medium #1): 

E\ = 
dFl 

*    e[ dp 

_k, J[° -A2u;[e-"'i:+h)Jt (Ap)dA   (z + h>0) 

-A\le"'{:+h V, (Ap)dA     (z + h<0) 
-[[e-^f2+e^f,]X2J,{Xp)dX 

(ops\ dpdz 

IdA 
An 

^A2e-''{:+h)Ji(Ap)dA      (z + h>0) 

^-A2e"'(:+h)Jl(Ap)dA     (z + h<0) 
+ [[e-*zf2-e*'fi]X\J{{Xp)dX 

Bi'-^-tl-TT+ritf copel  dz 

IdA 
4TT 

l-u,(z+h) J0(Ap)dA    (z + h>0) 

^A'u;]e"'(:+h)J0(Ap)dA     (z + h<0) 
+ J[[c-""/2+eVj]AV0(Ap)i/A 

HMD: E and H fields in water (Medium # 1): 

£! = -! 
dF'    dF 
dy      dz 

r-Ze-"'l'+h)J0(Ap)dA.   (z + h>0) 

V Ae"'l:+h)J0(Ap)dA       (z + h<0) 

+ f [-e"""/2 +^"A]ulXJ0(Ap)dX 

1 
A,/0 (Ap) sin" (^) H— J, (2/?) cos(2^) AVA 

£ =• 
dFl 

a[ dx 

kA [{e"':g2+e":g3) AJ0(Ap) Jt(Ap) 
P 

A2 s\t\(<fi)cos((f))dA 
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*--!«£ 
e[ dx 

f 
f r „-'„-"( (;+/,> (z + /z>0) 

t=     Vl"i ̂e"'{:+h)    (z + h<0) 
+ e-":f2+e">:fi 

F 
/l J, (Ap) cos(^)J/l 

// = 
&»//£•,' & I   dy      dz 

I {uTV'^ (z + h>0) hiA f An a w-'e"11^"'  (z + /?<0) 
e    f2+

e   fi~u\e    g2
+uie   83 

AJ0(Ap) Jt(Ap) 
P 

A2sin(^)cos(^)^//li 

H\. j 
CO/J£[ 

' d 

dy 

fdFl    dF] 
- + • 

dy      dz -r\K 

IdA 

An 

(lu;xe-u^h) (z + h>0) 

lu;,e,"{:+h)  (z + h<0) f <?        /2+e     /3-"ie        #2+"^     #3 

/IJ0 (2p) sin2 (^) + — J, (Xp) cos(2^) /l2<//l 

/ 
!/r'e_"l(I+',) (z + /y>0) 

LW,-^"'<;+/" (^+^<0) 
yfXJ0(Xp)dX 

//'=- 
&>//£, 

_5_ 

3z 

( azrl 5F     5F.1 

• + • 

IdAZ 

An f 

dy      3z 

-«,(*+*) 

2ri 
-« 

(z + /?>0) 

(z + /?<0) 

•A2J,(/l/9)sin(^)JA^ 

- M|e-'"-y2 + «,***/, + *V"'rg2+AV*'g, 

^ = atan(x/y) 

With the analytical solutions, the electric and magnetic fields in the water layer can be 
easily calculated. Fig. 2 through Fig. 5 show some examples of the field calculation. 
The parameters used are listed in the table below. 
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Air Water Bottom 
Relative permittivity, 

e„(e,=s0£n) 
1 1 1 

Conductivity, a (S/m) 0 0.018 0.012 
Permeability, n (Him) 4/txlO"7 47TX10"' 4TIX10"' 

d{m) 300 
Mm) can vary from 0 to 300 

Dipole moment ldA{A-m2) 2500 

frequency / (Hz) 1000 

Since H- and Hv are respectively the dominant components for VMD and HMD cases, 
the results for only these two components are plotted here. Fig. 2 and Fig.3 give the 
magnitude of H-_ for the VMD case. Given the measurement equipment available, the 
minimum detectable magnetic field is also indicated in the figure (dotted line). From 
experimental data, |H|min = 4x 10"5 A/m and |E|min = 1 x 10"6 V/m. 

a> 
•o 
3 

z = -20m 
my 

minimum detectable H | 

10"2 \ - 

10' \ - 

10* - 

108 - 

Iff10 -    -—.- 

irv,J 
i i i                       i 

500 1000 1500 

P(m) 
2000 2500 3000 

Fig. 2    Magnitude of Hz in water for VMD case: VMD is 5m below surface (h = 5m), observation 

points horizontally placed at z = -20m 
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irf 
P: = 200m 

minimum detectable H |" 

/ 
E 

y 
X s 

2  105 / _ 
« / 
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| / 
B! 
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in* i                            i 1                                                  | 

-300 -250 -200 -150 
z(m) 

-100 -50 

Fig. 3    Magnitude of Hz in water for VMD case: VMD is 5m below surface (h = 5m). observation 

points vertically placed at p = 200m 

Fig. 4 and Fig. 5 give the magnitude of//,, for the HMD case: 
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z = -20m 

3000 

Fig. 4    Magnitude of Hy in water for HMD case: HMD is 5m below surface (h = 5m), observation 

points horizontally placed at z = -20m, fl> = 7t/3 
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Fig. 5    Magnitude of Hy in water for HMD case: HMD is 5m below surface (h = 5m), observation 

points vertically placed at p = 200m, O = 7t/3 
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Validation 

After the analytical solutions were developed, several tests were conducted to validate 
the results. 

VMD Case: 

First, the formulas for the field were checked against to the results obtained in some 
references. Reference [1] provides formulas for the calculation of magnetic fields 
inside a semi-infinite conducting medium. If let S2 = £/ and 02 -ou our 3-layer model 
reduces to a 2-layer model, which is analogous to the model used in [1]. Then our 
equations of the coefficient functions reduce to equation (11) and (12) in [1]. A 
MATLAB program was written to numerically compute our field formulas. Again, if 
the model is reduced to a 2-layer (air-water) model, our simulation result matches 
with Fig. 2 in [1]. 

1 u I                     I i                    i                   i                    i                   - 

~          - —*  +       -- - 

"*•*•---.«_ 

10 r '-. 

-> : * 
* 

0 
H- •* 

0 
o> 

13   ,.0 
2 10 < - *                                                          - 
0. 
E " * 
< * 

- R1 = 1 
R1 = 1.5 

# 
10"' 

R1 = 2 
^ -. 

-"    R' = 3 "'•. 
*    data from [1] 

""* 
"'•--. 

in'2 i                    i 1                    1                    1                    1 

0 12 3 4 5 6 7 
Relative Depth 

Fig. 6    Comparing our numerical simulation results with Fig. 2 in [ 1 ] 

To facilitate comparison, a factor G is introduced that is proportional to H:, which is 
also used in [1]: 

2n(z + hy 

Likewise, R is a ratio defined as 
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R] z + h 

where z is the depth of the observation point and h is the depth of the dipole source. If 
let so = £/and an =07, the 3-layer model reduces to a 2-layer (water-bottom) model. 
The same simulation results for the factor G were obtained as shown in Fig. 2 of [1] 
when the dipole source was put at the water-bottom interface. 

Second, the results reported here were also compared to those for a 
homogeneous-medium case. For instance, if the VMD source is placed in the middle 
of the second layer, where it is far away from both interfaces, our field results are very 
close to that of a quasi-static case in which a dipole radiates in the infinite 
homogeneous medium. Figure 7 shows an example for this. For the 3-layer case, the 
dipole is 150m away from both of the interfaces. The calculation of field perfectly 
matches with that for the quasi-static case. 

h = -150;z = -150 
0.7 

06 

05 

04 
I 
o 
a> 

"C 
3 
f   03 
01 * 

02 

0.1 - 

— three-layer media 
-    single media 

•»*»*»     *~Ht-*- I      I      t      >      I      >      >      I      I 

05 1 5 2.5 3 
p(m) 

35 45 

Fig. 7    VMD simulation result compared to homogeneous case 

Third, the boundary conditions across both the air-water and water-bottom interfaces 
were checked. It is not difficult to find the solutions to the fields in the first and third 
layer of the medium using the same method described in part 1. Figures 8a and 8b 
show the boundary conditions data at the air-water interface for the VMD case. 
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Fig. 8    Checking tangential E & H fields along the air-water interface for VMD case 
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The continuity of tangential fields along the water-bottom interface was also validated. 
The results are not be plotted here. 

HMD Case: 

For HMD case, the same strategies as in VMD case were used to validate the results. 
First, when the model was reduced to the 2-layer case, our equations for the 
coefficient functions reduced to equations (21) through (23) in [2]. Then the 
simulations shown in Fig. 2 in [2] were repeated. Our numerical simulations (for 
fields in line with dipole, refer to Fig. 2 in [2]) of the factor A are plotted in Fig. 9. 

22 
* = 0.5n 

-i r ~i 1 r- 

0 8 - L- 

\Yh\ = 0 

|y/7| = 0.1 

\Yb[ = £L2_ 

_i i_ 
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ITPI 

Fig. 9    Magnitude offactor/1 (proportional to //,.) vs relative horizontal distance (0=0.57t) 

The factor A is proportional to the Hv field. In [2], it is defined as 

2xp3 

IdA 
A{yh) = ^7Hy 
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It should be mentioned that our results are not exactly the same as those 
given in [2]. The starting points and the final values match. But there is an 
overshoot in Fig. 9, which cannot be seen in Fig. 2 of [2]. The reason for 
this appears to be that in [2] a first order approximation of integral was 
used to calculate the field, while our simulation used the analytical 
solution, which can give more accurate calculation. To verify that ours is 
correct, the boundary conditions for this specific case were also checked. 
From our numerical data, the factor A (which is proportional to tangential 
H) is perfectly continuous across the interface, as shown in Fig. 10. This 
provides supporting evidence to that our data are more accurate than that 
in [2]. The tangential E fields across the interface were also checked and 
the similar results are shown in Fig. 10. 
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Fig. 10: Boundary conditions associated with factor A (0=0.5n) 

The results of HMD were also compared to those for the quasi-static case. They also 
match with each other very well. 

Finally, the boundary conditions were checked for both tangential electric and 
magnetic fields across air-water and water-bottom interfaces. The results for the 
electric field at the water-bottom interface are shown in Fig. 11. 
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Fig. 11: Tangential E fields along the water-bottom interface for HMD case 
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Appendix B: FDTD Method 

Dennis Sullivan 

Department of Electrical and Computer Engineering, University of Idaho 

Abstract 

The major effort of the FDTD group for the past year has been to extend the range of 
FDTD simulations underwater without using enormous computer resources. It has 
included the development of a near-field, far-field formulation to allow the use of 
large cells in simulating the far field, and the development of an interpolation scheme 
to improve accuracy when large cells are used in the far field. It has also included 
the development of a new perfectly matched layer to reduce the size of the 
surrounding computational domain. A reformulation of the basic FDTD method has 
been introduced to improve stability during extremely long computation times. 

Introduction 

In the past year, the FDTD simulation group has accomplished the following: 

1. The reformulation of the FDTD code for greater stability at low 
frequencies. 

2. The development of a near-field/far-field formulation that allows 
the simulation of energy sources in the near field with relatively 
small cells, while the far field is simulated with larger cells to 
extend the range of the simulation. 

3. The development of a perfectly matched layer (PML) for 
simulations in lossy media at ELF frequencies. 

4. The preliminary investigation of a high-resolution interpolation 
method to improve resolution in the far field. 

Accomplishments: 

Details of the above accomplishments are given in the following sections. 

1. Reformulation of the FDTD for greater stability at low frequencies. 

The   formulation   of the   Maxwell's  equations  that  is  normally  used   in   FDTD 
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dD     V7 £n = V 0 dt 
xH 

D(0)) = £ {»)' E(co) 

dH 
-V: <E. 

simulations is [1] £„ —= Vx// (1.1a) 

(1.1b) 

(1.1c) 

This formulation allow a great deal of flexibility in simulating complicated materials 

because the various materials are specified by the complex dielectric constants (a>) 

and having a separate equation to calculate the electric field E from the flux density D 
allows one to bring to bear signal processing techniques for the formulation in FDTD. 
The simulation of a lossy material leads to equations of the form 

E".=  D' /    , (L2a) 
At a 

er +  
eo 

S" = 5""' + E"t. (1.2 b) 

This formulation is very stable at radio frequencies and above, but leads to potential 
instabilities at ELF frequencies. The reason is Eq. (1.2 b), which is the time domain 
implementation of an integration. An ELF FDTD simulation is over a fraction of a 
wavelength, which means that an integration like Eq. (1.2b) is constantly increasing. 
Over long simulations on the order of 20,000 iterations, this has occasionally led to 
instability. 

Alternatively, we begin with the following time-domain Maxwell's equations 
8E 

££0 — = VXH-(JE (1.3 a) 
r ° dt 

rlH 
»0 — = -VxE. (1.3b) 

dt 

We assume the cell size is  Ax and the time step is At.    The  E"*
1
  can now be 

calculated from [2, 3] 

E'^(k) = ca(k)E':(k) + cb(k)[H";U2(k + \/2)-H';:U2(k-\/2)],      (1.4 a) 

where 

-i 
f .    At-cr) 

ca- 
<     A,-a" 

1+  cb = ca**. (1.4 b) 
(e,e0Ax) 

There is a crucial choice that was made here.    Usually, the  Ex  term next to the 
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conductivity is averaged across the two time steps 
E";'{k)-E"x{k)   (o\(E";>(k) + E:(k)^_ 1  H:+,n(k + \/2)-H";[n(k-\/2)_ 

M 2 Av 

which would lead to the following expression for ca: 

ca- 
'     A/V 
V ^Er£U J 

'     A/V I f  
2^„) 

(1.5) 

At ELF frequencies in lossy media, the ca of Eq. (1.5) would be negative, leading to a 
potentially unstable condition. (The implementation of Eq. (1.3 b) into FDTD is 
straight-forward and will not be presented here.) 

There is another choice that leads to substantially larger time steps, and therefore, 
substantially faster solutions. Once the cell size A.r is chosen, the time step must be 
chosen to satisfy the Courant condition, which in three dimensions is 

A,<^^, (1-6) 
V3-c v max 

where  cmm   is usually the speed of light in a vacuum.    The complex dielectric 

constant is calculated by 
a 

er =e, + - 

The materials of interest for this project and their dielectric properties are listed in 
Table one. At ELF frequencies, the imaginary part of the dielectric constant will 
dominate the magnitude for all the materials except air. Therefore, increasing the 
dielectric constants of mud or metal to 80 would make very little difference. If we 
assume every material  in Table one has a real dielectric constant of 80, then 

cma* =c0/V80   and the time step is almost an order of magnitude greater. (c0  is the 

speed of light in a vacuum.) Even though air is one of the materials used in the 
simulations, air is a boundary medium in this project. It presents almost perfect 
reflection to an electromagnetic signal in water, even if the higher dielectric constant 

is used. 

Table 1.    The properties of the materials used in the 
simulations described in this paper [4]. 

Material sr a (SI m) 

Air 1 0 
Lake water 80 0.018 

Mud 40 0.002 

Metal 1 107 
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2. The development of a near-field/far-field formulation 

By utilizing the equivalence principle [5], a method has been developed to model the 
radiating sources with a relatively high resolution, and to model the far field with 
larger cells to extend the potential problem space. Two, three-dimensional FDTD 
problem spaces are utilized to implement the near-to-far field transformation (Fig. 2.1) 
[6, 7]. A problem space with a relatively small cells size (1 m3) is used to model the 
source (Fig. 2.1a). Another problem space with larger cells (13 m3) is used to model 
the far field (Fig. 2.1b). The ratio of 13 to 1 between far and near field cells size is 
somewhat arbitrary. For the simulations in this paper, it resulted in near and far field 
problem spaces of about the same size. Each problem space is surrounded by a 
perfectly matched layer. (A new PML for ELF frequencies and lossy media has been 
developed and is discussed in section 3.) Each problem space contains a 
three-dimensional transfer surface where the equivalence principle is implemented. 
The tangential fields calculated on the transfer surface in the near field are impressed 
on the transfer surface in the far field to form the far field source. This is illustrated 
in Fig. 2.2. 

Transfer 
surface 

Near-field Problem space Far-field Problem space 

Figure 2.1. Two problem spaces are used in the FDTD simulation. 
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X(m) 
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•^r^100 2o° 
X(m) 

(a) (b) 

Figure 2.2. (a) Near-field mesh plot, (b) Far-field mesh plot. 
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Validation 

In this section, the results of the near to far field transformation are compared to 
analytic results calculated using Sommerfeld's half-space (SHS) problem. 
Sommerfeld's half space problem calculates the resulting fields from an oscillating 
dipole near a plane interface separating two homogeneous half-space regions, as 
illustrated in Fig. 2.3. This method was well described in Appendix A and in the 
literature [8] and will not be repeated here. In Fig. 2.3, the upper layer is air, the 
middle layer is water and the lower level is mud. The water layer in the middle is 
300 meters thick. The monitor lines represent the places where comparisons 
between the methods will be made. 

1000m 

Figure 2.3.    Diagram of the comparison between the FDTD near-to-far field 

transformation and the SHS method.    The source is 1 meter below the 

air-water interface. 

Comparisons at 200 meters and 1000 meters are shown in Fig. 2.4a and Fig. 2.4b, 
respectively. The amplitudes in each figure are calculated by the method of 
two-equations, two-unknowns [3]. The horizontal coordinate is the distance to the 
air/water surface and the vertical coordinate is the magnitude of the field. The 
discrete symbols represent the FDTD calculations and the different kinds of lines 
represent the calculations by SHS method. Clearly, the results of the comparisons 
are very good in all cases. 
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300 

Figure 2.4. Comparisons of the FDTD simulations and the SHS calculations for the cell 

size ratio of 10. The source is near the upper surface of the water layer, (a) 200 meter 

case, (b) 1000 meter case. 
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This section illustrates the use of FDTD with a near field, far field transformation in 
simulating a more realistic case. One of the goals of the simulation is to verify the 
accuracy of the modeling with measured data that will be made in a lake. Because 
the lake bed is not flat, analytical approaches cannot be used to solve the problem. 

The antennas that will be used in the transmission are four meter by four meter 
rectangular current loops. Figure 2.5a illustrates how this is simulated in the XY 
plane in the FDTD space. Metal can be simulated by insuring that an E field is zero 
at a particular point in the space.    Therefore, using cells that are one meter cubed, the 

metal loop antenna is simulated at the corresponding  Ex   or  E    positions, as shown 

in Fig. 5a. Since the radius of the wire of the antennas is considerably less than the 1 
meter cells size, the thin rod approximation [9] is used to model the wire at these 
positions. 

In FDTD, a current cannot be simulated directly, but it can be simulated indirectly by 
using Ampere's circuit Law [5] and specifying the surrounding //fields: 

/ = cf—H-fll. (2.1) 
J/"o 

By impressing a hard source on one of the  E    fields, a value is induced on the 

surrounding H fields, as shown in Fig. 2.5b.    This results in a current, via Eq. (2.1). 

Hx(ij*l/2.k+l/2|      '      I 

4 meters S 
u ^ " i  lbli-l2j-H/:.kl 

/                                       /   f | i;y(ij'i/:.k). 

/                                       /    / '      ** 
y                                       /    /   4 meters n«i- i/2j<-i/2.ki J ' 

/ / t / 
Ky (source) v 

(a) (b) 

Figure 2.5. The simulation of a four meter by four meter current loop in FDTD. 

A model of the lake bed is created for the far field domain (Fig. 2.6). The cells are 
ten meters cubed. The shape of the lower surface of the water layer shows a 
complex geometry structure similar to a real lake bed. 

Figure 2.7 shows the results of the near to far field simulation using the current loop 
source in the near field and the lake bed in the far field. Results are given for two 
different places, 200 meters and 1000 meters from the source, and at three different 
frequencies, 10, 100, and 1000 Hz.    These simulations were done on an HP DL140 
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GE Quad Core and required about 6 hours.    Both the near and far field problem 
spaces were 120 cells cubed. 

400 m 

X 
J-+Y      < > 200 m 

_».  1000 m 

Figure 2.6.    The lake bed that is simulated in the far field.    The cells are 10 meters 

cubed.    The source is the current loop located one meter below the surface. 
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(a) The results at 200 meters (b) The results at 1000 meters. 

Figure 2.7.    Results of the simulation illustrated in Fig. 2.6. 

3. The development of a perfectly matched layer (PML) for lossy media at ELF 
frequencies 

Berenger [10] assumed that any plane wave propagating in the direction d near the 

PML could be broken up into the part traveling perpendicular to the PML,  dL, and 

the part traveling parallel,  d   (Fig. 3.1).    The two conditions for the PML are 

1.   It must have the same impedance as free space and not present a loss to the 
wave traveling parallel to the interface [Eq. (3.1)]. 
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2.   It must increase the artificial electric and magnetic conductivities such that the 
impedance still matches that of the free space. 

Both   of these  conditions   are   met  by   increasing  the   electric   and   magnetic 
conductivities in the PML such that 

f \ 

JWoJ 
f \ 

(3.1) 

JO)£0 

Note that this impedance is a real number. 

Berenger implemented Eq. (3.1) into the FDTD formulation by a split-step 
formulation that broke each electric and magnetic field up into two components. 
Most applications assume that the background medium in the main problem space is 
free space. 

Free space PML Medium 

Figure 3.1.    The PML is implemented by assuming any propagating wave can be broken up 

into a part that is perpendicular to the PML interface and a part that is parallel to it. 

The PML in a lossy medium at ELF frequencies 
When the background medium is lake water and the frequencies are in the ELF region, 
the situation is different [10, 11]. Lake water has a dielectric constant of 80 and a 
conductivity of 0.018 S/m.    For lake water at 1 kHz, the complex dielectric constant 
is 

0.018 
£... = £... + 80 + 

JO£0 y(2/rxl03)(8.85xl0-12) 

= 80 - y'3.24 x 105 = -;'3.24 x 105. 

Therefore, the impedance is 

'A, 
Mo (3.2) 

ja>e0 

This impedance can be written in polar coordinates as 
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Notice that because the loss term dominates, the impedance is 45 degrees in phase. 
The impedance of the PML material must remain at this value, but at the same time 
increase the loss further as it goes perpendicular into the PML. This can be 
accomplished by adding a factor s to the conductivity and the permeability 

»7« = 
s-Mo 
s • cr 

JO)SQ 

(3.3) 

This causes the PML medium to absorb outgoing waves faster than the water medium, 
but also avoids reflections from the PML medium. 

Implementation into FDTD 

We begin by looking at the implementation of£v  and  H,  propagating in the y 

direction perpendicular to the PML: 

£..£,,  + CT..E„ = • 
dt dy 

M, 
dff _ dE^ 

dt       By 

Note that ew = 80  and  a = 0.018  for water.    The first step to convert the equation 

to the FDTD formulation is to approximate all partial derivatives as difference 
equations.    The spatial derivatives are not as important in this discussion, so we write 

dH: _ del_H 
dy Ax 

Taking the usual finite-difference approximation to the time derivatives gives 

En+l-En 
VI VI' 

A/ 

f -   \ 

V £o J 

1 del   H 
£0     Ax 

and solving for the updated version of E 
IT 

ET-E1 + 'At-a.' ,      At  del_H 
h»   = *  £w£0      Ax 

From this we can develop the FDTD equations: 

£;+l =ca-E"xy + cb-del_H, (3.4 a) 
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If 
At • a„ 

£..£„ 

£b =MI{s„sMdel   {r 
7     At-a, ^ 

(3.4 b) 

£..£,, 

A similar procedure for the //field gives 

Hn
2
+v2 = H':-V2+db-del_E, 

where 

db = 
ju0-Ax 

(3.5 a) 

(3.5 b) 

Recall that to implement the PML we increase the conductivity and the permeability 
at the same rate by a constant parameter s as shown in Eq. (3.3). This is easy to do 
for the permeability.    We add another parameter^ to Eq. (5 a) 

Hn;m = H"-m + fy(j)-db-del _E, (3.6) 

Instead of changing db tOA//(2 //„ Ax), for instance, we simply set ,fy(j) = 0.5 . 

However, increasing  cr,   is not so straight-forward.    Notice that it involves both ca 

and cb.    Rather that recalculate the parameters for each increase, we define another 
parameter 

gy(j) = 

I t 
M • <y.. 

(3.7) 

It 
At-s- a... 

£..£, o      J 

The factor is added to Eq. (3.4 a): 

K =gy{J)-ca- E"xy + gy(j)-cb-del_H> 

Note that it is necessary to split the E fields, but not the H fields. 

(3.8) 

Results 

In this section we illustrate the effectiveness of the lossy medium PML. We will 
start with the problem space illustrated in Fig. 3.2a, which is 80 cells cubed. Each 
cell is 25 meters cubed. The source is a single-cell electric dipole. After 4000 time 
steps, the amplitude is calculated along a monitor line as shown in Fig. (3.2 b). 
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80 cells 

Monitor line 

F.7. Dipole 
source 

80 cells 

(a) 

15 cells 

(b) 

Figure 3.2. (a) A dipole source is located in the 80 problem space. Once steady state 

has been reached, the amplitude is determined at a transverse line 15 cells from the source. 

The cells are 25 m3. (b) The amplitude at the monitor line after 4000 time steps. 

The simulation is then repeated for the truncated problem space shown in Fig. 3a 
where a four-cell PML has been added. In this simulation the right wall has been 
moved in to within ten cells of the source. The results are plotted in Fig. 3b along 
with the results of the previous simulation. For comparison, Fig. 3c is the same 
simulation with no PML on the truncated wall. 

In one final simulation, the problem space is reduced to 60 x 20 x 20 cells, as 
illustrated in Fig. 3.4a. The results are shown in Fig. 3.4b where the results of the 
original simulation of Fig. 2 are presented for comparison. The amplitudes on the 
monitor line within five cells of the center are identical. If these values represent the 
information of interest, then the addition of the PML means a problem space of 60 x 
20 x 20 = 24,000 cells instead of the original 803 = 510,000 cells. Fig. 3.5c repeats 
the simulation with no PML on the boundaries. 

Because this PML was developed for lossy media, it is not particularly effective in 
free space or other lossless media. Most of the simulations for this project include 
the water surface and therefore, free space is part of the problem. What remains to 
be developed is an interface mechanism so the lossy PML can be used underwater and 
the normal PML used above water. 
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Monitor line 
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Dipole 
source 
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(C) 

Figure 3.3. (a) The problem space is truncated to ten cells to the left of the source. A 

four-cell lossy PML has been added to each boundary, (b) The solid line is the amplitude for 

the simulation in (a), while the dashed line is from the 80 cell monitor line of Fig. 3.2. (c) 

The same simulation with no PML. 

60 cells 
15 cells 

20 cells 

(a) 
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Figure 3.4. (a) A simulation similar to Fig. (3.2) but with the problem space truncated to 60 x 20 x 

20 cells, (b) The solid line is the amplitude for the smaller problem space while the dashed line is the 

larger problem space of Fig. 3.2. (c) The same comparison when a 60 x 20 x20 problem space with 

no PML is used. 

4. The development of a high resolution interpolation method 

Section 2 described the near-field, far-field transformation that enables us to use 
relatively large cells to extend the computational domain. However, there may be 
times when relatively high resolution is needed in the far field. Figure 4.1 illustrates 
such a possibility where an indentation in the sea floor would be lost if cells on the 
order of 10 meters cubed are used. 

air 

Figure 4.1. Typical contours in shallow water. Cell sizes on the order often meters cubed 

are used in the far field. This could result in substantial errors when modeling shallow water 

where mines are often planted. 

One solution is a correction to the FDTD fields that is made after the core FDTD 
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simulation is finished [13]. In the following discussion /Twill represent the true 

electric field around a boundary, and E represent the averaged FDTD electric field 
value (Fig. 4.2). At an arbitrary boundary, the electric fields can be represented as 
the sum of the tangential and normal components 

E = E,+E. (4.1) 

E = E,+E. (4.2) 

Ez(ij,k) 

Figure 4.2.    FDTD only calculates values at discrete points, such as Ez(i,j,k).    Values at 

other positions can be approximated by interpolating 

Two assumptions are made: The tangential components of the true and the FDTD 
values are equal 

and the normal flux densities are equal 

A, = A, n n 

Equation (4.4) leads to the following relationship between the E fields: 

e£„ = zEn, 

(4.3) 

(4.4) 

(4.5) 

where e is the true dielectric constant at that point and e is the averaged dielectric 
constant usually used in the FDTD formulation. From Eq. (4.3) and (4.5), it can be 
shown that the true electric field can be calculated by the averaged FDTD E field with 
a correction term added.    Specifically, in the z direction the E field is 

E. = E.+ 
fl. 1 E,„ (4.6) 

where  Em  is calculated by 

E:„=n:{(n-E)n]. (4.7) 

In Eq. (4.7)  n  is the gradient of the dielectric constant and  h.  is the z component of 
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h.    The correction is applied after the FDTD simulation is finished, 
detailed explanation is in [14]. 

A more 

Verification of the Method 
In order to verify the accuracy of the interpolation scheme described in the previous 
section, we used an analytic method based on Legendre polynomials [4]. This 
method calculates the values of the electric field inside a layered sphere in an electric 
field. Table one is a list of the materials of interest, along with their dielectric 
properties. In particular, we will look at the values on an axis at forty-five degrees in 
the YZ plane because it is at these slanted angles that the largest FDTD error occurs. 

water 

Ez 

ll\ X  , 

Figure 4.3. A layered sphere is used to provide an analytic check to the FDTD data. The 

background medium is water; the sphere is half mud. half water. The narrow layer in the 

middle is either mud or water. 

We show the results for an FDTD simulation using 10 m cubed cells at 1 kHz in a 
water medium both before and after the correction is applied. The sphere in Fig. 4.3 
has the characteristics of mud. The thin layer is Vi a cell wide and has the 
characteristics of water. Figure 4.4 displays the results. FDTD alone sees the basic 
features but tends to average the magnitudes out. After the interpolation, a much 
better agreement is attained, even though the layer is less that one cell. 

Since the interpolation takes place only after the FDTD simulation, it adds nothing to 
the computation time and very little to the needed computer resources. This 
approach provides more accuracy when large cells on the order often meters are used 
for long range, underwater FDTD simulation. 

89688888 

x w/o correction 

o with correction 

0 
meters 

50 100 
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Figure 4.4. Results for a 1/4 cell (2.5 m) layer of water. The straight line is the analytic 

values, the x's are from and FDTD simulation before the correction, and the o's are the 

values after the correction. 

Conclusion 

The effort over the past year has concentrated on maximizing the effectiveness of the 
FDTD simulation over long distances. Towards this end, a more stable formulation 
of the FDTD algorithm was introduced to insure stability during very long simulations. 
A near-field, far-field transformation was implemented to allow radiating sources to 
be simulating with relatively small cells to maintain accuracy, while the far field is 
simulated with larger cells to increase he simulation distance. A perfectly matched 
layer was developed to work more effectively for highly lossy materials at ELF 
frequencies. This decreases the need for a large surrounding computational space. 
Finally, a correction to the FDTD method has been implemented that allows the 
determination of the fields at a higher resolution than the FDTD cells. 

One of the tasks that remain is the merging of the new underwater PML with the old 
PML for free space. The underwater PML is not effective in free space. While the 
propagation of ELF signals in free space is not a major interest for this project, it 
could play a substantial role in maintaining accuracy of the underwater simulations. 
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Appendix C: HFSS Method 
Chris Johnson and Christopher Wagner 

Department of Electrical and Computer Engineering, University of Idaho 

Introduction 

Ansoft's High Frequency Structural Simulator (HFSS) is a commercial 
frequency-domain, finite-element electromagnetic fields solver. The purpose of this 
particular investigation is to ascertain whether or not HFSS is applicable for 
simulating ELF electromagnetic signals. Towards that end, discussions are provided 
below that address how HFSS should be used and validation data are also provided to 
substantiate the efficacy of HFSS for this application. It is assumed in this 
discussion that the reader is already familiar with the use and operation of HFSS; this 
report only focuses on those features of HFSS that are unique to ELF signal 
generation and data processing. Version 11.1.3.1 was used in the following discussion. 

Using HFSS 

Hertzian Sources 

The Hertzian dipole is a source option available under the excitations menu in HFSS. 
Per equivalence theory, this source is capable of producing the fields of an electric or 
magnetic dipole. To implement this source, the following needs to be executed: 

1. Select ''Excitation/Assign/Incident Wave/Hertzian-Dipole Wave" 
2. Specify the location of the source in the model. 
3. Select the dipole moment and dipole direction "Cartesian/Spherical Vector 

Setup" tab. 
4. Select the "Hertzian-Dipole Wave Options" tab. 
5. The next tab has two options: the radius of surrounding sphere and type of 

dipole. 

The first option needs a bit of clarification. It allows the user to specify a 
mathematical spherical surface that surrounds the dipole. On this surface HFSS 
impresses a set of equivalent currents that produce the same field as that of a dipole. 
Although equivalence theory does not restrict the size of this sphere, the size does 
impact the simulation efficiency. A small sphere requires smaller tetrahedrons and for 
a given domain size, this implies more tetrahedrons and longer simulations. Larger 
spheres imply just the opposite, but preclude examination of the fields close to the 
dipole, since one cannot ascertain field information within the sphere. Thus a tradeoff 
between spherical  size, computational efficiency and computational accuracy  is 
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required. 

For ELF applications we found that a sphere of 10 meters does not cause a substantial 
increase in computation time and allowed sufficiently close observations for most 
applications. If a study of the effects within the 10 meters is necessary then a second 
model can be created with a much reduced domain so that the computation time does 
not become extremely burdensome. Note: HFSS places restrictions on the size of the 
objects and domains with respect to the default units of the model. For example, 
HFSS does not allow the use of millimeter sized objects when dealing with kilometer 
sized domain and vice versa. The default model units can be changed under 
"Modeler/Units" in the main menu. It should be set to ''km" for most ELF 
applications. 

Edit Source menu 

HFSS has an option that allows the user to change how the fields are calculated 
during the post processing step. Under the tab HFSS\Fields\Edit Source there is an 
option for total field or incident field calculations. This has no effect on how the fields 
are calculated during the solution process but does affect how the information is 
presented. For example, the scattered fields formulation is recommended when 
dealing with plane waves, but it can lead to errors when the total field is weak, which 
suggests that the incident and scattered field are roughly similar. That is, the 
subtraction of the incident field from the total field yields a small number that is 
susceptible to numerical noise. This error is particularly pronounced in a vacuum 
where the total is zero. The results in this paper were all done with the total fields 
option selected. 

PEC Block Excitation 

The Hertzian sources in version 11.1.3 are not implementable when the source is 
embedded in lossy media. For this reason there was considerable doubt early on about 
whether HFSS was a viable tool for this project. Upon further investigation and 
consultation with HFSS technical support a solution to this problem was found. It was 
discovered that an equivalent source can be constructed using a perfectly conducting 
block of any shape. This is accomplished by implementing the following steps: 

1. Place a perfect electric conductor (PEC) volume where the source is to be 
placed. 

2. Embed a Hertzian electric dipole or magnetic dipole in the block. 
3. Place a radiation boundary that encompasses the block using the "Incident 

Field" specification. 
4. Make sure the surrounding sphere of the Herztian source is completely 

contained within the PEC block. 
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We surmise that this approach is in effect using a scattered field formulation by 
impressing an incident field on the block and allowing the block to scatter that field. 
The scattered field is equivalent to that of a dipole. This approach does cause a scaling 
factor to be introduced in the data that is still under investigation. 

Boundary Conditions 

As with any full domain solver that is simulating fields within an open domain, care 
must be taken to truncate that domain with a radiation boundary condition that 
emulates an infinite space. HFSS allows the user to choose between a low accurate 
radiation boundary condition or a highly accurate perfectly matched layer (PML). The 
radiation boundary and the PML boundary are both available under the "Boundaries" 
menu. We have found that both conditions work quite well for ELF applications. Due 
to the simplicity, we typically use a radiation boundary and have found that default 
settings are sufficient. 

Global Materials 

The global material setting (typically a vacuum) is the default material when no 
material is selected by the user. However, the global material setting also impacts the 
quality of the radiation boundary, particularly when observation points are chosen that 
are close to the radiation boundary. HFSS recommends that the global material setting 
be that which is specified for the interior. For example, in the case of an antenna 
radiating in a vacuum, the global material setting should be a vacuum; if it is radiating 
in water, then the global material setting should be water, etc. However, in a 
multilayered or inhomogeneous material, there is no one global material setting that is 
optimal. To obtain the best solution, however, HFSS recommends that the global 
material setting be that of the material that surrounds the observation point. As an 
example, consider a three-layered region of air, water and mud. If the observation 
point is in air and close to the radiation boundary, a global material setting of air 
should be used; if the observation point is in mud and close to the radiation boundary, 
a global material setting of mud should be used, and so forth. To set the global 
material: 

1. Select the model 
2. Select "HFSS/Boundaries/Edit Global Material Environment" 

Mesh Surfaces\ Volumes 

A high-quality mesh is critical in obtaining good results from HFSS. A sophisticated 
meshing tool is embedded within HFSS that automatically meshes the problem space 
based on the input from the solid modeling editor. However, as with any meshing tool, 
the resulting mesh is not always optimal.    For this reason it is sometimes critical to 
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guide the meshing tool by adding non-material surfaces that assist the tool to place 
more (or less) tetrahedrons within a given area in order to improve accuracy (i.e. more 
tetrahedrons) or to increase computational speed (i.e. less tetrahedrons). For example, 
to improve the mesh along a field monitoring line, a rectangular sheet can be placed 
such that the edge of the rectangle is on the line of measurement. Then by performing 
a mesh operation on the rectangle, the user can increase the number of tetrahedrons in 
that localized area without significantly increasing them throughout the entire volume. 
These mesh operations are available in the project manager menu. 

Exporting Field Data 

Exporting field data is accomplished using the "Fields Calculator" in HFSS. It is 
located under HFSS\Fields\Calculator within the main menu. Although numerous 
options are available in the Fields Calculator, only a few are relevant for this 
application. 

In the upper right corner of the Fields Calculator is where the specific solution set of 
interest is specified. Take care to make sure that each parameter is set properly to 
ensure a valid simulation, per the procedure below: 

1. Generate a solution using the "Analysis" option under the project manager 
tree. 

2. The "Solution" drop down menu has all the different solutions that were 
generated by HFSS 

3. After the solution is selected then any field type, frequency data, or phase data 
that has a saved solution can be selected. 

4. If a parametric sweep was done then the different parameters can be selected 
with the "Change Variable Value" button. 

After specifying the solution of interest, the values of interest need to be specified. 

5. Select the "Quantity" button. When it is selected a drop down menu will 
appear and E and H values can be selected. When either is selected an entry 
will appear in the command queue area. 

6. Select the "Export" tab. This will cause another GUI to appear. 
7. In the first empty field type the name of the exported file. 
8. Select the point where you want the Fields Calculator to compute the fields in 

the model. There are two ways to do this. First is to have HFSS calculate the 
locations by specifying the start point, end points and spacing. The second 
way is to create a tab delimited file with the suffix of *.pts and import the 
points. The file should have no column header, should have the columns 
arranged in x, y, z order and should be in units of meters. 

9. After selecting "ok", HFSS will export a file with the field data. 
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Near Field Line Setup 

The near field line setup is an option in HFSS that allows the user to solve for the near 
fields along a line. It can be any polyline of one or more segments. It is necessary to 
have the near field line setup to measure values along a specific line such as a radial 
line leading away from the source. Before near field data can be plotted or exported a 
setup must be defined. This is done in the "Radiation" option in the project manager. 

1. Select a line or lines that you wish to use. 
2. Select "Radiation/Insert Near Field Setup/Line." A new window will appear 

with a couple options to select. 
3. Specify the name of the set-up. 
4. Select what geometry is desired for the set up. If the right line was not initially 

elected, it can be selected now. 
5. Input the number of evenly spaced points that will be calculated along the 

geometry. 
6. All other options should be left as default. 

This process can also be used to get points to use in the fields calculator. By right 
clicking on the setup for the geometry of interest, select "Compute Max Parameters." 
A new window appears and gives several options to choose, in particular the solution 
to use and the frequency. Select "ok" to continue. HFSS will do some calculation and 
another window will appear giving a summary of the near field values to be exported. 
Select "Export Fields" and a *.csv file will be created that will contain points along 
the line and field values. This file can then be opened in excel and edited to meet the 
format required for the fields calculator by deleting the headers, index, and field 
values so that all that is left is the x, y, z points. Save the file as a tab delimited file and 
change the file suffix to "*.pts." 

Validation 

The following discussion hinges on the validation of HFSS data. The actual 
electromagnetic phenomena associated with this data are of secondary importance. 

• Figures 1 and 2: The first validation scenario considers a 1,000 Hz electric 
source in homogeneous, lossy water with a conductivity of 0.018 S/m. Data 
generated by HFSS and by the standard electric dipole solution are plotted and 
compared. The correlation between data sets is quite good, but a calibration 
multiplier of six was needed in the HFSS data. The reason for this factor is not 
readily apparent to us, but further studies performed by us have suggested that 
the factor is proportional to f172. Since the wave number is also proportional to 
ta in lossy media, we surmise that the calibration factor is related to wave 
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number. 

Figures 3 and 4: The second validation scenario considers a 100 Hz source in 
free space. Data generated by HFSS and by the standard electric dipole 
solution are plotted and compared. Although the electric field comparison is 
quite good, the magnetic field comparison is not. The trend in the magnetic 
field is correct, but the HFSS data is sporadic about the trend line. Since HFSS 
is an electric field solver, this sporadic data is associated with the 
post-processing step that converts electric field data into magnetic field data 
via Ampere's law. The quality of the magnetic field data is improved by mesh 
refinement, since the mesh dictates the quality of the numerical derivatives. In 
addition to this issue, a multiplication factor of sixteen was needed to get the 
HFSS data to agree with the standard dipole solution. The need for this factor 
is still unknown. 

The data of Figures 6, 7, 8 and 9 are associated with the three 
layered-geometry of Figure 5. The conductivity of the water is 0.018 S/m; the 
conductivity of the floor is 0.012 S/m. For Figures 6 and 7, the excitation is of 
the electric kind; for Figure 8 and 9, the excitation is of the magnetic kind. The 
operating frequency in both cases is 1,000 Hz. In both cases the source and 
observation points are located 11 m below the surface and 5 m below the 
surface, respectively. In all four figures, the correlation between the HFSS data 
and the Sommerfeld (WSU) data is quite good. Again, however, a 
multiplication factor is needed in the HFSS data to obtain good correlation. In 
the case of Figures 6 and 7, the factor is six; in the case of Figures 8 and 9, the 
factor is sixty. Further research is needed to understand and to quantify this 
factor. 
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Future Work 

It is clear from the preceding discussion that HFSS is indeed a viable tool for 
computing ELF signals in water. However, there still exists several issues that need to 
be resolved to make this tool highly effective. These are: 

• Multiplication Factor: As noted in the previous data, a frequency-dependent 
multiplication factor is needed to get correlation between the HFSS data and 
the closed-form solutions. The reason for this factor is not understood and 
needs to be investigated. 

• Electric Field Excitation, Magnetic Field Observation: When an ELF electric 
source is used to excite a magnetic field, the corresponding magnetic field data 
in HFSS follows the correct trend, but the data is still nevertheless quite 
sporadic. We believe that this issue is directly related to the mesh. Some kind 
of mesh refinement is believed to be needed to resolve this problem. 

• Meshing: Given that the Lake has regions where the floor and surrounding 
landscape spatially varies in large amounts and has other regions where such 
variations are little, the finite-element mesh needs to be optimized to obtain 
both rapid and accurate solutions. A meshing software package has been 
purchased to assist HFSS with the meshing process. Use of this package will 
be a key activity of Phase Two. 
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Computer Resources: HFSS is a computationally intensive program. Its 
ability to solve large, complex probelms is directly linked to the available 
computer resources. In the case of this ELF project, a resource study will be 
conducted to ascertain the required computational resources that HFSS will 
need to accomplish the stated tasks. 
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Appendix D: Quasi-Static Method 
Robert Rebich and Christopher Wagner 

Department of Electrical and Computer Engineering, University of Idaho 

Introduction 

For ELF frequencies, the corresponding wavelengths are very large compared to the 
domain size, which suggests that wavelike motion is not a main attribute of the 
electromagnetic field. Therefore an electrostatic solution can be applied to approximate 
the fields. For a system to be regarded as quasi-static the time rate of change in the 
electric field is negligible for magnetic source excitation; the time rate of change in the 
magnetic field is negligible for electric source excitation. This allows us to write 
electric field solutions in terms of a scalar potential and magnetic field solutions in 
terms of a vector potential. In this work, we have only concerned ourselves with 
quasi-electrostatic (QES) effects. 

The QES system is shown in Figure 1. The materials that define the two layers are 
characterized by their conductivity and permittivity. The experiment took place on a 
lake; therefore the two material media model will be air and water with their 
corresponding material characteristics shown in the figure. The green dots in the water 
represent a set of electrodes with opposite charges and the green dots in the air represent 
the images electrodes. The image electrodes produce the same fields at the EMA that 
the reflected fields off the interface from the original electrodes. The electrodes are 
located at a vertical distance h from the interface and separated by a distance d. The red 
dot represents the EMA (x, y, z). The model replicates the experiment by moving the 
electrodes along a radial axis and measuring the fields at the EMA. 

To energize the electrodes, a voltage V is impressed between them. The experimental 
voltage between the electrodes is unknown, but the current was recorded. To find the 
voltage, we estimated the impedance between the electrodes and multiplied that 
impedance by the current. 
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Figure 1: Geometrical rendition of the quasi-static geometry. 

The voltage can be determined anywhere in the domain by a simple electrostatics 
relationship. The total voltage is the superposition of each contribution made by each of 
the real and image electrodes. The voltages in the water and air are given as, 

V = 
4TT( Ji+jcjij) Lrlt 

+ 
'12 '21 

Z> 0 

v = t!5. [_L _ 11 
4rr (,Oi +/CJ tt) Lr,t       r21. 

Z<0 

Here R is the reflection coefficient at the interface and T\s the transmission coefficient 
at the interface. The posistion vectors are functions of x, y and z and are as follows: 

r„ = Jpl + h. - zO1     ifc = fa + G- + zj2 f\ = V'C* - xL¥ + (v -yjJ 

r:l =Jp| + (z-22)
il      r22 = J/*/+Ci + z2)' ft = V> -*:J: + fy ->':>" 

The subscripted coorrdinates refer to either the first charge (left) or the second charge 
(right). Once the position vectors and potentials are known, the total electric field can 
be determined through the gradient of the voltage: 

E= -TV 

The validity of the code is based upon the assumption that the charge on the spheres is 
uniformly distributed. This assumption will fail when the two spheres are close to each 
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other or when the spheres are close to the material interface. 

A comparison of the QES solution versus experimental and other solution methods is 
shown in Figure 2. The dipole for the experiment was oriented down the positive x-axis, 
which resulted in a very weak component of Ey; therefore only Ex (solid curves) and E-_ 
(dashed curves) are represented. The plot shows very good comparisons for the QES 
and Sommerfeld (WSU) solutions. After about 100 m the WSU Ez component flares 
away from the QES E-. This is expected since the QES solution cannot account for 
wave-like effects, unlike the WSU solution. The experimental data from run #1117 are 
also comparable to known analytical solutions. The characteristics of the curves 
matched the characteristics of the analytical solutions. 
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Figure 2: Field comparison for Run #1117. Source is 0.5 A-m. 
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